Alan Title

2011 John Adam Fleming Medal Winner

Alan Title was awarded the 2011 John Adam Fleming Medal at the AGU Fall Meeting Honors Ceremony, held on 7 December 2011 in San Francisco, Calif. The medal is for “original research and technical leadership in geomagnetism, atmospheric electricity, aeronomy, space physics, and related sciences.


Alan Title is immensely curious about many things, in both science and society. The combination of that curiosity, a strong memory, and an unusual imagination serves him well, making him a remarkable solar scientist, optical designer, and research manager.

He has led the development of critical hardware components. He motivates an innovative group of engineers in the development of instruments for ground-based observatories as well as on a series of spacecraft, including Skylab, Solar and Heliospheric Observatory (SOHO), Transition Region and Coronal Explorer (TRACE), Hinode, Solar Dynamics Observatory (SDO), and the future Interface Region Imaging Spectrograph (IRIS). As principal investigator on these projects, he inspired researchers around the world to new thinking about the behavior of the Sun’s magnetic field. And he tirelessly spreads the discoveries from solar research to other research disciplines as well as to the public.

Alan’s technical skills have helped the observational solar physics community to observe the solar surface at very high resolution by substantive advances in image stabilization and in adaptive optics. He developed the first practical Michelson interferometer filter, now used to measure surface magnetic fields while simultaneously allowing helioseismic measurements that have supported major advances in our understanding of the inner workings of our neighboring star.

Alan’s unrelenting advocacy for an open-data policy, initially for SOHO’s Michelson Doppler Imager and for TRACE, has contributed to making this the standard for all of NASA’s Heliophysics missions, where it is a tremendous stimulus for solar physics in particular and heliophysics in general.

He has supported the community through many committees and panels, including a Decadal Survey Committee, the Space Studies Board of the National Research Council, the NASA Advisory Council, the American Astronomical Society (AAS) council, and many others.

Among his many scientific contributions, his work on the structure and dynamics of the Sun’s surface magnetic field stands out. He invented the term “magnetic carpet” to describe the multitude of dynamic magnetic connections in the solar atmosphere that drive the solar corona and are imprinted in the solar wind. He stimulated feature tracking to map the solar surface flows as these carry magnetic field around. His thinking frequently places problems in a much larger context, and his helpful questioning often enables colleagues to formulate more far-reaching conclusions than they initially saw in their work.

The importance of his work for solar physics, space physics, and related scientific disciplines, be it in the form of hardware development or scientific investigation, makes him a worthy recipient of AGU’s 2011 John Adam Fleming Medal.

—Karel Schrijver, Lockheed Martin Advanced Technology Center, Palo Alto, Calif.


The Fleming Medal is a great honor. It is especially pleasing to me that AGU recognizes that solar physics is important for understanding the Earth and its surroundings. Also, I accept this honor with the recognition that Alan Title is the name for a team of scientists and engineers who have for more than 4 decades developed instruments, measurement techniques, and data analysis systems. These instruments have been used to explore the Sun from its deep interior to its outer corona. I’ve had the honor of leading this team since 1971, and because of them I am receiving the Fleming Medal.

I have been very, very lucky in my scientific career. My thesis advisor, Robert B. Leighton, had recently discovered the solar 5-minute oscillations and the fact that magnetic field was strong and compact well away from sunspots. These were hot topics at the time, and his students were fashionable. I was also lucky that I was a teaching assistant for the original Feynman lectures. The physics I learned in those classes has been a guide throughout my career. I left California Institute of Technology (Caltech) for Harvard College Observatory, where I had the opportunity of working on the H-Alpha telescope for Skylab. This gave me an introduction the NASA space program and the art of writing proposals. At Harvard I met Larry Mertz and invited him to work in my lab. He in turn revolutionized how I thought about optical filtration techniques. Jim Baker was kind enough to share his thoughts on optical systems. I also met a very bright undergraduate, Ted Tarbell, who is here tonight, and a very bright graduate student, Ruth Peterson, who is also here this evening and who is my wife.

I left Harvard to lead the solar group at Lockheed, which was then at Rye Canyon in the San Fernando Valley of Los Angeles. At Rye Canyon, Harry Ramsey showed me how to design practical optical systems. Five years later the group moved to the Lockheed Palo Alto Research Labs, where we became close collaborators with Loren Acton’s X-ray group. In the 1990s, Phil Scherrer and I formed the Stanford-Lockheed Institute for Space Research.

Looking back on my career, I feel my most important contribution has been my role in developing an international open data policy for heliophysics. Since the SOHO mission all of the heliophysics missions done by NASA, the Japan Aerospace Exploration Agency/Institute of Space and Astronautical Science, and the European Space Agency have had a policy of releasing near–real time data without restriction. Software to calibrate the data, analysis software, and powerful tools to search the database are now available to all. In the beginning it was hard to convince some scientists and administrators that an open data policy was a good idea and that neither the teams developing instruments nor the funding agencies would suffer from giving away their data; rather, their science would be enhanced by discoveries of the greater community working on the data, while the visibility caused by the greater range and quicker publication of new results would reflect well on the funding agencies. As predicted, the policy has been successful, and all have benefited.

—Alan Title, Lockheed Martin Advanced Technology Center, Palo Alto, Calif.