Anny Cazenave

2012 William Bowie Medal Winner

 Anny Cazenave was awarded the 2012 William Bowie Medal at the AGU Fall Meeting Honors Ceremony, held on 5 December 2012 in San Francisco, Calif. The medal is for “outstanding contributions to fundamental geophysics and for unselfish cooperation in research.”


It is both an honor and a distinct pleasure for me to nominate our colleague Anny Cazenave for the American Geophysical Union’s highest honor, the Bowie Medal. A French scientist of highest reputation and one who has remained deeply involved in the work and supportive of the mission of the AGU for her entire career, Anny has made, and continues to make, seminal contributions to the success and international impact of our science. Her work is routed in, and has remained at the forefront of, the area of space geodesy, in an era in which this field has been transforming our understanding of the planet.

Anny’s early research from 1975 until the mid-1990s was focused on the solid Earth in examinations of the spatial and temporal variations of gravity. In particular, she was a pioneer in the use of satellite altimetry for understanding geodynamic processes in the deep ocean. This involved the construction of high-resolution gravity fields from Seasat, ERS-1, and Topex. In collaboration with her colleagues and students, Anny used the new gravity models to investigate a wide range of marine tectonic features including lithospheric cooling and subsidence, geoid height variations across fracture zones and deep ocean trenches, and the isostatic compensation of seamount chains.

These applications of space geodetic technology to marine geodesy were followed by work on the problem of global sea level rise using the profoundly important data sets provided by the Topex/Poseidon and Jason-1&2 satellite altimetry missions. She was one of the first to employ the altimetry data to infer a globally averaged rate of sea level rise of approximately 3 mm/yr. This work has been accompanied by work with ocean hydrographic data to estimate the contribution to this global signal due to thermal expansion of the oceans. By incorporating into her analysis, as she has done most recently, the time-dependent gravity field data from the GRACE satellite system, she has been able to address for the first time the problem of the closure of the global budget of sea level rise. For a decade, she has also been deeply involved in studying terrestrial waters from space using altimetry, GRACE, and other remote sensing techniques.

Anny has received many awards in recognition of her contributions to the geophysical sciences based upon the application of space geodetic methods. Major awards include election to the French National Academy of Science in 2004, as a foreign member of the U.S. National Academy of Sciences in 2008, and to the Indian National Science Academy in 2011. She was awarded the Vening-Meinesz Medal of the EGU in 1999, and the Arthur Holmes Medal in 2006.

In summary, Anny has been a leading scientist in the spectacular success of the joint French/American Topex/Poseidon and Jason altimetry missions that have revolutionized our understanding of the global sea level rise associated with greenhouse gas warming of the lower atmosphere. She is a truly deserving nominee for the American Geophysical Union’s highest honor, the Bowie Medal, named for a geodesist of similarly uncommon accomplishment.

                                                           –W. R. Peltier, University of Toronto, Toronto, Ontario, Canada


It is a great pleasure, a privilege and an immense honor to receive the AGU Bowie Medal. When I look at the list of previous recipients, with so many prestigious well-known names; I can hardly realize that I have also been awarded this prestigious medal. I feel very humble, following on from these highly distinguished scientists. Thanks very much Dick for your kind citation and thanks to the colleagues who have supported my nomination.

Receiving this medal has a special echo for me. As a European scientist, I consider that AGU is the most prestigious scientific society in Earth sciences worldwide. A few years ago, I had the opportunity to closely work with AGU as International Secretary, and this was an extraordinary experience. I really appreciated the many facets that characterize the AGU, striving for excellence in science, interdisciplinarity, and cultural diversity.

My research field is geodesy. Thus I am very proud to share this with William Bowie, who made so many important contributions to geodesy in the early decades of the 20th century; including the topics of geoid determination, isostasy, and North American Datum establishment, among others.

Although initially I wanted to be an astronomer, I became by chance a space geodesist and never regretted it. Space geodesy is a truly interdisciplinary research field with applications in nearly all areas of Earth sciences. My scientific career indeed illustrates this. After a PhD on the rotation of the Earth, I worked on the gravity field determination from satellite orbits, and later on using satellite altimetry. This led me to work on the link between long wavelength geoid anomalies and mantle convection as well as in several areas of marine geophysics. The ever growing performances of space geodesy techniques were also the opportunity for me and my team to study large scale tectonic deformations, vertical crustal motions, motion of the Earth center of mass, etc. Over the last 15 years, my research has mostly been devoted to climate and environmental science using satellite and other observations, in particular sea level variations and their causes, land hydrology, and the global water cycle. Moving to such different fields is a great challenge that makes us rather humble when we consider the huge amount of new things that need to be learned each time. But on the other hand, this is clearly a rich experience.

I would like to share this Bowie Medal with the many students and colleagues I worked with all along my career, in France, in Europe, in North America and other parts of the world. Owing to their scientific leadership, several of them had a profound influence on my research. Moreover, human relationships are a fundamental component of scientific research, especially nowadays where research is a collaborative enterprise. And I have to say that I have been very lucky on that matter.

To finish let me thank my students, my colleagues, my friends –and of course my family–who have played such an important role all along these years, and again share with them this wonderful recognition.

                                                           –Anny Cazenave, LEGOS-CNES, Toulouse Cedex, France