Quantifying the magnetic field strength over the Earth’s surface and through geologic time is one of the grand challenges in our field. Together with his advisors, Ron has developed important and innovative approaches, including novel selection of research materials, such as archeo-metallurgical slags. The results have been remarkable, showing very large and rapid changes in geomagnetic field strength on several occasions. These “Levantine spikes” appear to be robust features, and other research groups, inspired by Ron’s results, have now found equivalent features in other localities. These observations have major implications for geodynamo processes, and the repercussions are just beginning to be felt.
Ron has also done excellent fundamental research on the micromagnetic structures in these materials and on the mechanisms of remanence acquisition and stability. His study of the archeological slag using magnetic force microscopy was comprehensive and adept, integrating the observed magnetic microstructures with previous micromagnetic modeling results and with bulk-sample properties including hysteresis and anisotropy, to obtain a deep understanding of how these materials acquire and retain remanence, and how they “remember” the strength of the field in which they cooled.
Ron has also demonstrated leadership and service to the GPE research community through the development and distribution of well-designed open-source cross-platform software for analyzing paleointensity data. The Thellier_GUI software provides a rational, objective, and consistent basis for estimating the paleofield strength and for quantifying the uncertainty in that estimate, helping us all to get the most out of our experimental data.
I believe that Ron Shaar is an outstanding young scientist, an emerging leader in our field, and a superb choice for the 2016 William Gilbert Award.