J. Taylor Perron

2014 James B. Macelwane Medal Winner

Rajdeep Dasgupta, Christian Frankenberg, J. Taylor Perron, David Lawrence Shuster, and Jessica Erin Tierney were awarded the 2014 James B. Macelwane Medal at the AGU Fall Meeting Honors Ceremony, held on 17 December 2014 in San Francisco, Calif. The medal is for “significant contributions to the geophysical sciences by an outstanding early career scientist.”

Citation

Pioneering research in geomorphology requires breadth and deep physical insight. The puzzles to be solved extend over vast ranges of spatial and temporal scales and include a wide spectrum of surface features on Earth and other planets. Finding solutions requires mathematical analysis, numerical modeling, field observations, laboratory experiments, and ­high-​­resolution remote sensing. This complexity is motivating a new generation of remarkably talented planetary scientists, and J. Taylor Perron’s elegant and transformative research has placed him at the forefront of that group.

Innovation builds on fundamentals. After receiving undergraduate degrees in Earth and planetary sciences and in archeology at Harvard, Taylor moved to University of California, Berkeley, to join Dietrich’s and Kirchner’s legendary geomorphology groups. Working in this thriving intellectual community—with fellow graduate student Mike Lamb and Professors Manga, Fung, Richards, De Pater (astronomy), and others—he developed the extraordinary breadth of interest and skill that remains a defining character of his research. As a graduate student, Taylor worked on problems as varied as hillslope erosion, valley formation by methane rain and rivers on Titan, polar wander on Mars, and topographic signatures of life. These interests broadened while he was a Daly Postdoctoral Fellow at Harvard, where he explored (with Professor Huybers) the possibility that polar deposits on Mars record Milankovitch cyclicity and continued his seminal study of the regular spacing of ridges and valleys.

Taylor returned to the latter problem after joining the faculty of the Massachusetts Institute of Technology (MIT). In a remarkable study published in 2012, he demonstrated how competition between soil transport and river incision controls the spatial scale of river networks, one of the most striking and pervasive features on Earth’s surface. His work elucidated how these networks record the influences of rock strength, rainfall, and even life and provided a universal framework for understanding drainage networks on other terrestrial bodies. Many other important contributions could be mentioned, but we end by looking back a century, to Darwin’s classic model of the progression from coral reef to atoll. Many islands do not follow this sequence, and providing an alternative has long been a goal in geomorphology. Taylor and his group resolved this enigma by using a model that links reef accretion with island vertical motion and by establishing that coral reefs bear the imprint of ice age sea level cycles—a perturbation to the Earth system of which Darwin was unaware.

This medal recognizes Taylor’s landmark achievements and the promise of discoveries yet to come.

—Jerry X. Mitrovica, Harvard University, Cambridge, Mass.

—Robert D. van der Hilst, Massachusetts Institute of Technology, Cambridge, Mass.

Response

Thank you, Rob and Jerry, for the kind words. I am grateful to AGU for this honor and also for shining a light on the field of geomorphology. It is remarkable that landscapes, which are so eminently observable, can be so full of mystery. And there is no shortage of mysteries: from the ancient Appalachians to the spidery networks of methane rivers on Titan, there are many landscapes we have yet to fully explore.

But I didn’t realize at first how many stories the geological landscape has to tell. As an undergraduate, I spent a lot of time wondering how and when humans migrated to the Americas. Through a stroke of luck, I migrated from the east side of North America to the west side. There, in Berkeley, Jim Kirchner, master analyst, and Bill Dietrich, insightful questioner, found a kid with an archaeology degree on their doorstep and taught him to think quantitatively about Earth’s surface. Around the same time, Alan Howard, Jerry Mitrovica, and Michael Manga sparked my interest in planetary landscapes, which never fail to surprise.

In the years since, new institutions have brought new friends. Colleagues at MIT and Woods Hole have drawn my attention to new problems, introduced me to stellar students, and made time to learn about my work. I especially thank Dan Rothman, Rob van der Hilst, Maria Zuber, Leigh Royden, Sam Bowring, Andrew Ashton, John Southard, Paul O’Gorman, Tanja Bosak, and Ben Weiss. Many others have helped me as collaborators, kindred spirits, or both. I am particularly indebted to Mike Lamb, Kelin Whipple, Paul Myrow, Peter Huybers, Ken Ferrier, Sean Willett, Steve Martel, Sujoy Mukhopadhyay, Devon Burr, Josh Roering, Noah Snyder, Sergio Fagherazzi, John Grotzinger, Mike Church, and Tom Dunne.

I will end by mentioning three groups who deserve their own medals. First, to the students and postdocs who have fueled our work, I look forward to counting you as colleagues for many years to come. Second, I thank my parents, who fostered my curiosity, invested in my education, and kept open minds about what they would get in return. Finally, and most importantly, I thank my wife, Lisa, who makes all my work possible, and our daughters, Mia and Ada, who have inspired me in ways I never anticipated.

—J. Taylor Perron, Massachusetts Institute of Technology, Cambridge, Mass.