Princeton University, Princeton, N. J.

Jorge L. Sarmiento was awarded the 2009 Roger Revelle Medal at the AGU Fall Meeting Honors Ceremony, held on 16 December 2009 in San Francisco, Calif. The medal is for “outstanding contributions in atmospheric sciences, atmosphere-ocean coupling, atmosphere-land coupling, biogeochemical cycles, climate, or related aspects of the Earth system.”
Citation
I am convinced that Roger Revelle would have been especially pleased with this year’s winner of the medal named in his honor: Jorge Sarmiento from Princeton University. I can’t think of anyone else who has done more than Jorge to solve the puzzle that Revelle himself formulated in 1957 together with Hans Suess in their seminal Tellus paper: What is the fate of the carbon dioxide [CO2] that is emitted into the atmosphere as a result of the burning of fossil fuel, and what is the role of the ocean in all of this? Now, slightly more than 50 years later, and in no small part thanks to Jorge’s work, this puzzle has been largely resolved. Jorge was among the first to use complex three-dimensional ocean carbon cycle models to analyze in detail the processes that control the oceanic up-take of anthropogenic CO2 from the atmosphere. He also pioneered the use of such models to assess how this uptake could be affected by global climate change. But this list of already remarkable achievements does not do justice to Jorge’s breadth of research, which spans a wide range of questions at the interface between climate and Earth’s carbon cycle. It also does not do justice to all of his other contributions, especially the fact that he has inspired, encouraged, and guided a large number of young scientists.
What makes Jorge stand out is that he is not afraid of tackling some of the most difficult problems. He combines scientific curiosity, creativity, and the willingness to pursue approaches that at first do not seem to work but that yield extraordinary results in the long run. Not surprisingly, he has become the world’s authority for all questions concerning the global carbon cycle. Jorge is also not shy of controversy, living up to T. H. Huxley’s observation that he often likes to quote, i.e., that “truth is more likely to emerge from error than vagueness.” I have always been impressed by Jorge’s ability to distill the essence of a problem into a simple conceptual framework, from which important conclusions can be derived. Perhaps the best example is the simple three-box model that he developed in the early 1980s to explain why atmospheric CO2 was substantially lower during the glacial period. To this date, this model is still one of the most powerful and insightful ways to think about this unresolved challenge. This strong conceptual thinking was also one of the guiding principles and likely success factors for the textbook Ocean Biogeochemical Dynamics, which I had the honor to coauthor with him.
Jorge obtained his Ph.D. from Columbia University in 1978, where he worked with Wally Broecker. He then moved to Princeton University, where he was first a research associate but soon was appointed as a faculty member. He just passed his thirtieth anniversary at Princeton, where he has been a driving force behind the building up of an impressive rank of faculty dealing with global change issues. I was extremely fortunate to meet Jorge some 15 years ago when he was on sabbatical in Bern with his wife, Lucia, and their two children. His mentorship was elemental in helping me to develop my own scientific career, and out of this mentorship grew an inspiring friendship. Embodying all the elements that this medal is aiming to recognize—scholarship, mentorship, and leadership—Jorge is a most deserving recipient of this year’s Revelle Medal.
—NICOLAS GRUBER, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
Response
Everything I have accomplished in life I owe to my family, without whose support and confidence in me none of this would have happened.
The 1957 Revelle and Suess paper on anthropogenic carbon dioxide uptake by the oceans remains the defining contribution in the field to which I have dedicated most of my career. I am deeply honored to have my name associated with Roger Revelle and the remarkable group of previous medalists.
Looking back, I see my career as having gone through four major phases, each with its own life lesson:
First was my training as a scientist in the 1970s, which was influenced by extraordinary mentors such as my Ph.D. advisor, Wally Broecker; my postdoc advisor, Kirk Bryan; and Claes Rooth, who took me under his wing; and by my involvement in the Geochemical Ocean Sections Study, which acquainted me with the finest scientists in tracer oceanography. It is through mentorship and being introduced to the scientific community that we learn our trade. I was lucky to have the best.
The second phase of my career began in the early 1980s when a U.S. Department of Energy program manager asked me to develop an ocean general circulation model of the carbon cycle. His challenge, which he backed up with generous funding, kicked off one of the most creative and exciting decades of my career, working together with Uli Siegenthaler and Mike Fasham, both now sadly deceased. I have seen and had the good fortune of experiencing on a number of occasions the difference that creative, visionary, and courageous program managers can make to a scientist’s career and the progress of science. I honor their contributions.
The third major phase of my career began in the early 1990s when Pieter Tans, Dave Keeling, and coauthors published two observationally based papers in which they proposed a view of the ocean carbon sink that I was convinced had to be wrong. This set off a decade-long series of observational and modeling studies, including important components of the Joint Global Ocean Flux Study (JGOFS) and World Ocean Circulation Experiment (WOCE) field measurement programs, and culminating in a series of papers on the ocean and terrestrial carbon sinks and my participation in writing the U.S. Carbon Cycle Science Plan. The lesson of this experience was not who was right or wrong, but the fact that we learned more from exploring the boundaries of our knowledge even at the risk of being wrong than we did from being safe and maybe right.
Finally, if I had to pick a life lesson that ties it all together, it would be the extraordinary and ever increasing satisfaction that comes from being a mentor to others. Without my 52 magnificent former postdocs and graduate students, including Niki Gruber, coauthor of the textbook Ocean Biogeochemical Cycles, published in 2006, plus a remarkable team of support staff and my brilliant colleagues at the Princeton Geophysical Fluid Dynamics Laboratory and elsewhere (including my longest-lasting group members, Bob Key, who keeps us honest with the data, and Rick Slater, who is the keeper of the models), I would have accomplished only a tiny fraction of what I have achieved. Nothing gives me greater pleasure than seeing how far my group members have risen in the field—except perhaps the gleeful satisfaction of an exciting scientific discussion where suddenly everything falls into place. What more could one want from life than that?
—JORGE L. SARMIENTO, Princeton University, Princeton, N. J.