Richard M. Goody

1998 William Bowie Medal Winner

Harvard University

Richard M. Goody was awarded the William Bowie Medal at the AGU Spring Meeting Honors Ceremony, which was held on May 27, 1998, in Boston, Massachusetts. The medal recognizes outstanding contributions to fundamental geophysics and unselfish cooperation in research.

Citation

“It is with great pleasure and distinct honor that I present this citation to Richard M. Goody, Emeritus Professor of Harvard University. It is a particular pleasure, being a student and researcher in the field of atmospheric radiation and remote sensing to which Richard has made pioneering and fundamental contributions.

“Richard’s fundamental contribution began in 1949 with his work at Cambridge University, England, on the understanding of the structure of stratosphere in which radiative processes play the dominant role in its thermal equilibrium state. This study led him to pursue infrared radiative transfer in planetary atmospheres and the manner in which simplified methodologies can be developed for effective calculations of radiative heating in the atmosphere. In particular, Richard discovered that the water vapor absorption lines within a 25 cm-1 spectral interval do not have similarity statistically and appear to be randomly distributed, leading to the development of the so-called Goody’s random model for spectral band [Goody, 1952].

“Although this band model was developed more than 30 years ago, its theoretical foundation is still being used by many to parameterize the transfer of atmospheric radiation involving nongray gases such as water vapor and carbon dioxide for climate models. Richard was the first scientist to recognize the potential of using emission spectra for the detection of ozone and nitrous oxide from space–long before greenhouse warming was a fundamental concern to scientists and lay public. Richard was also the first scientist to investigate interactions between radiation and convection [Goody, 1956]. The one-dimensional radiative-convective models have been used extensively in the last 20 years for investigating the external radiative forcing effects produced by greenhouse gases, aerosols, and clouds on climate.

“After his appointment as Abbott Lawrence Rotch Professor of Dynamic Meteorology and Director of the Blue Hill Observatory at Harvard University in 1958, Richard became the prime academic force in building the Earth and planetary physics program there. He continued research on a number of fundamental programs involving infrared radiation transfer and produced a classic book, ‘Atmospheric radiation: I, Theoretical basis’ published in 1964 by Oxford University Press. For the first time, this book integrated under one cover the fundamentals of radiative transfer, the theory of gaseous absorption, an authoritative treatment of band models and absorption spectra, radiative equilibrium and dynamic interactions, as well as some aspects of scattering. For many years it served as a guide for graduate students and researchers alike who were interested in the fundamental radiative transfer principles and in the application of such principles to remote sensing. This book was revised and updated in 1989, with the discussion of atmospheric scattering topics strengthened, and has already been widely cited in refereed papers. Richard was elected a member of the National Academy of Sciences in 1970 and has been playing an important role in the geophysics section of the Academy.

“During the 1960s and 1970s, when the space and satellite programs began to flourish, Richard played a key role in the U.S. exploration program on the atmospheres of other planets, principally Mars and Venus [Hunten and Goody, 1969]. His many important contributions included interpretation of spectroscopy data for the understanding and determination of the planetary compositions and dynamic processes, as well as the instrument design for space probes. As Donald Hunten of the University of Arizona pointed out, Richard is not only a creative scientist but also a practical visionary.

“During the 1980s, critical issues such as ozone depletion, buildup of carbon dioxide and other greenhouse gases, as well as acid rain, have dramatized the fact that these important scientific problems are truly global. It is evident that humans have begun to perturb the climate and the biosphere on a planetary scale and that there are significant gaps in our knowledge and understanding about this system which we live. In 1982, Richard, along with two of his colleagues, spearheaded a program referred to as ‘Global Habitability’ to examine the factors affecting the Earth’s ability to sustain life, principally through biogeochemical cycles and climate. It is submitted that Richard Goody was the grandfather of the International Geosphere-Biosphere Program.

“Richard formally retired from Harvard in 1991, but he did not retire from his science and the teaching of young scientists and graduate students. As a practical visionary, Richard has been introducing innovative computer techniques for teaching students at the Massachusetts Institute of Technology about radiative transfer, and actively recruiting scientists at the Jet Propulsion Laboratory, Harvard, and other universities to get involved in programs that he believes are fundamental and critical to the solution of climate problems. Remote sensing of clouds on the global scale using reflected and emitted line spectra is one area in which he recognizes the potential for applications to climate studies. Richard has a vision that small satellites with focused and low-cost missions will contribute more significantly to science and has proposed that calibrated spectral observations from satellites can be used to validate climate models, a critical component in global climate change research. Indeed, he is still a major force in influencing the future space program. In retirement, Richard completed a textbook, ‘Principles of Atmospheric Physics and Chemistry’ published in 1995 by Oxford University Press, designed for first-year graduate students, but at the same time providing the fundamental bases, new ideas, and first principles for climate studies. It has already become a classic for the teaching of atmospheric physics and chemistry and will be one for years to come.

“On a personal level, I have had the great fortune to be associated with Richard since 1984 and have received encouragement from him throughout these many years to pursue academic and research excellence. His generosity and unselfishness in sharing his original ideas, academic views, and immense knowledge with young scientists and graduate students are so characteristic of him.

“In summary, Richard’s research and teaching span half a century, covering the areas of atmospheric radiation, planetary atmospheres and exploration, effects of polar ice on climate, remote sensing, and fundamentals of atmospheric physics and chemistry. He has made a number of original contributions to them that have in-depth and broad impacts on atmospheric and planetary sciences. The presentation of AGU’s highest award–the William Bowie Medal–to Richard not only recognizes his outstanding contributions to fundamental geophysics and unselfish cooperation in research, but also places him in the league of Jule Charney (in dynamic meteorology) and Sydney Chapman (in atmospheric chemistry). It is in this spirit that I present Richard M. Goody to you.”

—K. N. LIOU, University of California, Los Angeles, USA

Response

“I am honored to be included among the recipients of the William Bowie Medal, particularly because the roster of recipients contains so many distinguished names, including those of personal friends and colleagues who might have welcomed me. In response, I would like to say what a career in geophysics has meant to me.

“My first encounter with atmospheric measurements was during the period from 1942-1946, when my job was to test prototype, high-altitude fighters and bombers. At the same airfield, at the same time, Dobson and Brewer were making their pioneering measurements of water vapor in the stratosphere. It was my wartime experiences that led Gordon Sutherland to offer me the opportunity to construct and fly an infrared solar spectrometer to determine the total amount of water vapor in the stratosphere.

“Out of this work, I developed interests in radiative transfer, climate models, the interactions between motions and radiation, quantitative spectroscopy, remote sensing with infrared spectra, the thermodynamics of the mesosphere, and a few other topics that fit no obvious pattern. A major extension of my interests came in 1954 when I reviewed The Physics of the Planet Mars by G. deVaucouleurs, I was an instant convert, and from that time on I have taken a great interest in planetary atmospheres, principally those of the earthlike planets, Mars and Venus.

“My interests were all formed before the beginning of the Space Age and before the rapid increase in government funding for Earth science that started in the late 1950s. I have never been directly involved in the large projects that characterize much of modern geophysics and space physics. I would like to be able to say that, with the freedom of choice I have had, my work has involved some grand design, some overriding objective, but to tell the truth I have been something of a dilettante, picking up interesting topics and moving on to others when something was accomplished.

“I can claim one motivation for everything I have done, namely, delight in a powerful, intellectual process that combines objectivity with creativity. All I have ever wanted to do was scientific research, which is how I have been fortunate enough to spend my life, and I am deeply grateful to the American Geophysical Union for this recognition that my work has made some contribution to a large and important field.”

—RICHARD M. GOODY, Harvard University, Cambridge, Mass., USA