Syukuro Manabe

Senior Meterologist

2010 William Bowie Medal Winner

Princeton University

Syukuro Manabe was awarded the 2010 William Bowie Medal at the AGU Fall Meeting Honors Ceremony, held on 15 December 2010 in San Francisco, Calif. The medal is for “outstanding contributions to fundamental geophysics and for unselfish cooperation in research.”


Suki Manabe has been a pioneer in the development and application of climate models. His pioneering work on the response of climate to increasing carbon dioxide paved the way for the projections of future climate that are used to inform policy makers throughout the world. More important, his emphasis on using models as “virtual laboratories” for understanding fundamental mechanisms of climate variability and change has profoundly influenced subsequent generations of modelers.

Suki came to the United States from the University of Tokyo in 1957 and has spent almost his entire career at what is now the National Oceanic and Atmospheric Administration’s (NOAA) Geophysical Fluid Dynamics Laboratory (GFDL). In the early 1960s, Suki and his colleagues developed a single—column model of the atmosphere in radiative—convective equilibrium. Using this model, he studied the response of surface temperature to changes in atmospheric carbon dioxide, taking into account the positive feedback effect of water vapor. Suki also played a critical role in the development of the GFDL’s first global general circulation model by devising the model components that were used to simulate radiative transfer, moist convection, and the heat and water budgets over land surfaces. He used this global atmospheric model to simulate, for the first time, the three—dimensional response of climate and the hydrologic cycle to increased carbon dioxide.

More than 40 years ago, Suki collaborated with Kirk Bryan on the first successful coupled atmosphere—ocean general circulation model simulation. Although it was idealized relative to today’s models, their model demonstrated the important influence of ocean dynamics on climate and set the stage for further coupled model development. Two decades later they used a more realistic model to simulate the response of climate to a gradual increase in carbon dioxide, elucidating the ocean’s role in delaying the warming of the climate system and influencing its spatial pattern. Subsequent work by Suki and his research group addressed such topics as the long-term consequences of increasing carbon dioxide on the deep overturning circulation in the ocean as well as the mechanisms that control the variability of surface temperature on interannual to interdecadal time scales. He and his colleagues also applied their models to the study of past climate change, including the role of freshwater input to the North Atlantic Ocean as a potential cause of the millennial-scale variability evident in the paleoclimate record and the processes that maintained the colder climate of glacial periods.

As outstanding as his research accomplishments have been, Suki’s contributions to climate science extend far beyond the papers he has written. He encouraged and nurtured the growth of his students and his research team. His unfailing enthusiasm for science has been inspiring to many. Isaac Newton once wrote that he saw farther than others because he stood on the shoulders of giants. This may have been false modesty on Newton’s part, but similar words could be spoken by the community of climate modelers that continues to stand squarely on Suki’s shoulders. It is a great pleasure to honor him as the 2010 recipient of the AGU William Bowie Medal.

—ANTHONY J. BROCCOLI, Department of Environmental Sciences, Rutgers University, New Brunswick, N. J.


I am very grateful for having my name added to the list of recipients of the William Bowie Medal, which contains the names of so many distinguished scientists whose achievements I admire greatly. I thank Tony Broccoli for his most generous citation. On this special occasion I would like to thank the late Joe Smagorinsky, without whom my career in climate modeling would never have been realized.

It was 1958 when Joe invited me to join his group at the U.S. Weather Bureau in order to develop a general circulation model of the atmosphere. Having almost completed my Ph.D. thesis at the University of Tokyo, I accepted his invitation and joined his group. Inspired by his ambitious plan for constructing a comprehensive model of climate, I immediately participated in the development of the model. This was the beginning of my very long career in climate modeling. As the director of the NOAA Geophysical Fluid Dynamics Laboratory, Joe hired a small group of young, hardworking scientists who helped each other well and were very generous in sharing ideas. He minimized our involvement in red tape and other administrative duties, making it possible for us to focus our attention on research. As a matter of fact, I did not have to write a single research proposal. Joe somehow managed to make expensive, top-of-the-line computers always available at our laboratory. I am very grateful to Joe and to NOAA, who supported him, for creating such an ideal environment for the study of climate.

During much of my career I have collaborated with Kirk Bryan, a pioneer of ocean modeling, in order to develop a coupled atmosphere-ocean-land model that has become very useful for studying and predicting climatic change. I have been extremely fortunate to collaborate with him on this successful project.

In constructing our models, we made the parameterizations of subgrid—scale processes as simple as possible. Nevertheless, these models simulate well the broad-scale features of climate, in particular, that of rainfall. Because of their simplicity, the computational requirements of these models are much less than the so-called Earth system models that have become very useful for studying global change. The model simplicity also facilitates the diagnostic analysis of the result obtained. Using these models, we have conducted countless curiosity—driven experiments, exploring the physical mechanisms that control not only global warming but also climatic changes of the geological past. It has been a great pleasure to work with Tony Broccoli, Tom Delworth, Doug Hahn, Barrie Hunt, Alex Hall, Leith Holloway, Tom Knutson, Ron Stouffer, Dick Wetherald, and others, performing these very enjoyable experiments.

Finally, I would like to thank Noko Manabe, my wife, for encouraging and looking after this absentminded research scientist throughout his research career, which has lasted more than 50 years.

—SYUKURO MANABE, Princeton University, Prince­ton, N. J.