Tuija I. Pulkkinen

1998 James B. Macelwane Medal Winner

Finnish Meteorological Institute

Tuija I. Pulkkinen was awarded the James B. Macelwane Medal at the AGU Spring Meeting Honors Ceremony, which was held on May 27, 1998, in Boston, Massachusetts. The James B. Macelwane Medal recognizes young scientists of outstanding ability who have made significant contributions to the geophysical sciences.


“Tuija I. Pulkkinen, of the Finnish Meteorological Institute in Helsinki, Finland, received the degree of Doctor of Philosophy in February 1992. She was the first woman to earn a Ph.D. degree in theoretical physics from the University of Helsinki. Her thesis work was the culmination of several years of intensive analysis and theoretical modeling of the complex, highly time-dependent plasma environment of the Earth. Her thesis was accorded one of the highest honors that can be granted to basic research within the Finnish system. Dr. Pulkkinen completed her doctoral work by carrying out research both in Finland and at the Laboratory for Extraterrestrial Physics at NASA Goddard Space Flight Center in Greenbelt, Maryland. Dr. Pulkkinen has since gone on to make further outstanding contributions in several areas of space research. She is the top young space scientist in her age group and has achieved a level of excellence that is extremely rare for scientists of any age.

“In addition to her Ph.D. degree, Dr. Pulkkinen holds an M.S. degree (University of Helsinki, 1987) and a Licentiate of Philosophy. She recently was accorded the honor of a Fulbright Fellowship and a Visiting Research Scholar position at the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder.

“Dr. Pulkkinen’s work combines a remarkably broad array of theoretical tools, mathematical techniques, and analysis methods. She has greatly extended the theoretical models describing the magnetic fields surrounding the Earth, added critically needed time dependence to these models, and compared the theoretical results to a wide array of observational datasets from throughout the Earth’s plasma environs. Dr. Pulkkinen’s papers are models of clarity, conciseness, and thoughtful treatment of issues at the forefront in space plasma physics.

“For the past 2 years, Dr. Pulkkinen’ work has focused on the intriguing issue of energy dissipation at magnetospheric substorm onset. She has become actively involved in magnetohydrodynamic (MHD) modeling of the global magnetosphere and has led several studies that compare data, empirical magnetosphere models, and global MHD simulations. This work has shown both the power of MHD modeling and the deficiencies in such idealized treatments. The lack of thin current sheets in MHD treatments, the failure to handle ion dynamics properly, and the limitations of improper ionosphere-magnetosphere coupling have all been addressed. She has worked with leading MHD simulation teams at the University of California, Los Angeles; the University of Maryland; Los Alamos National Laboratory; Goddard Space Flight Center; and the Naval Research Laboratory to try to improve the global modeling of the magnetosphere using all available tools.

“She has already published over 50 papers in refereed journals, with more than 40 of these in prestigious AGU publications. She has been the lead author or senior co-author on 39 of these papers. Dr. Pulkkinen has published an additional 30 papers in other journals and has delivered some three dozen invited talks, as well as over 150 other presentations with published abstracts at national or international meetings.

“Dr. Pulkkinen has an unparalleled record for a young scientist in the quantity and quality of her oral presentations. Her talks are models of a clear and compelling style. Her presentations are exceptionally well thought out and her talks are invariably fluent and interesting. The more she speaks at conferences and symposia, the more she is sought after as a speaker.

“At a time when most young researchers are just getting established, Dr. Pulkkinen is already exercising extensive leadership skills. She has just been appointed Group Leader for Space Plasma Physics at the Finnish Meteorological Institute. She has management responsibility for 12 scientists and for 7 ground observing facilities throughout northern Scandinavia. She is Chair of Subcommission D3 of COSPAR, Scientific Discipline Representative to SCOSTEP, and Chair of IAGA Working Group III-4, which deals with auroral and polar cap mapping into the magnetosphere. She plays a leadership role on numerous grants from the Finnish government, in addition to her co-investigator roles on satellite and groundbased observing platforms.

“Dr. Pulkkinen’s research and leadership accomplishments are coming forth at an accelerating pace. This is indicative of a career that is headed for tremendous heights. She has already demonstrated outstanding achievements in space research and is one of the preeminent leaders in global magnetospheric studies. The Macelwane Medal of the American Geophysical Union is intended to recognize young scientists of outstanding ability who have made significant contributions in geophysical studies. Tuija Pulkkinen is a young woman who has clearly achieved this exceptional level of accomplishment. She is one of the most eminent and widely recognized researchers in space physics in the world and very deserving of the AGU’s Macelwane Medal.”

—DANIEL N. BAKER, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder


“It is a great honor to receive the James B. Macelwane Medal, and it is indeed a pleasure to be cited by Dan Baker, who has immensely enhanced my understanding of all aspects of the art of space science. I am particularly happy to be the first Finn to receive the award, and hope that I can contribute to the success of Finnish space science in the future.

“Love and respect for nature grows very naturally in Finland, where forests and lakes are more abundant than urban life. Given my strong interest in pure mathematics from my early teens, the career choice as a scientist was a compromise between the logical and the observable. From my first years at the University of Helsinki it was already clear to me that I wanted to work in a field where observations and theory could work hand in hand.

“After my master’s degree, I started working at the Finnish Meteorological Institute. With excellent expertise and encouraging humor, Risto Pellinen introduced me to a whole host of groundbased observations of the auroral ionosphere available at our institute. I quickly found that my interests were focused on the large-scale processes, especially magnetospheric substorms, and the intercomparison of the groundbased measurements with space-borne magnetospheric measurements. Moreover, I realized that developing models that would facilitate such ground-space comparisons was an area where I had a good chance of making a relevant contribution.

“I visited the Laboratory for Extraterrestrial Physics at NASA’ Goddard Space Flight Center for several months while working on my thesis. I am deeply grateful to Bob McPherron, who was visiting Goddard simultaneously with one of my visits and gave me a unique perspective on substorm research with his detailed understanding of both ground and space measurements and his ability to weave these into a coherent picture of the magnetospheric processes. Dan Baker introduced me to the PROMIS dataset, which was the first opportunity to utilize multipoint magnetospheric measurements together with auroral imaging in the modeling. The empirical modeling work culminated in the prediction of thin current sheet development near the inner edge of the plasma sheet. As these results came at the same time as the first observations, as well as other theoretical predictions of such thin current sheets, they provided a framework for observations of the almost instantaneous response of the inner magnetotail at substorm onset.

“The International Solar Terrestrial Physics Program (ISTP) could not have been better timed for me. The modeling techniques were developed and I had gained experience in utilizing multipoint, multi-instrument observations, and the computer networks suddenly expanded so that data that previously took months to acquire were mine literally with a click of a mouse. A 16-month stay at the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder provided a unique opportunity to pursue problems utilizing the ISTP dataset, as well as to interact with the several local groups involved in various fields of space research. The enthusiasm and excitement for scientific problems in the group led by Dan Baker provided an extremely productive working atmosphere when tackling problems in large-scale Sun-Earth physics. I would also like to take this opportunity to thank Mario Acuna and the numerous people at Goddard and elsewhere who have worked innumerable hours to make ISTP the success it now has proven to be.

“In the near future, I look forward to further exploitation of the ISTP and other datasets to extend my understanding of our geophysical environment and the variety of space plasma systems. I also want to contribute to sharing the excitement of science with the general public, especially with children, whose open minds never cease to fascinate me. I would like to acknowledge the role of the Finnish Meteorological Institute, where the Geophysical Research Department has been a tremendous working environment, always supportive of my research there as well as travel abroad. I would like to thank my husband and now 4 year-old son for a rich and happy life outside the scientific world, as well as for their adaptability when science has required long working hours or extended stays away from home.”

—TUIJA I. PULKKINEN, Finnish Meteorological Institute, Helsinki, Finland